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An algorithm is developed for discretizing boundary-value prob-
lems given by a general linear elliptic second-order partial-differen-
tial equation with general mixed or Rebin boundary conditions in
general logically rectangular grids. The continuum problem can be
written as an operator equation where the operator is self adjoint
and positive definite. The discrete approximations have the same
property. Consequently, the matrices for the discrete problem are
symmetric and positive definite. Also, the scheme has a nearest
neighbor stencil. Consequently, the maost powerful linear solvers
can be applied. In smooth grids, the algorithm produces second-
order accurate solutions. It is the generality of the problem (general
matrix coefficients, general boundary conditions, general logically
rectangular grids) that makes finding such an algorithm difficult.
The algorithm, which is a combination of the method of support
operators and the mapping method, overcomes certain difficulties
of the individual methods, producing a high-quality algorithm for
solving general elliptic problems. ® 1995 Academic Press, Inc.

1. INTRODUCTION

This paper considers the problem of accurately solving
boundary-value problems which consist of a general elliptic
partial-differential equation (PDE)

—div K grad « = f, (1)

given in some region (), and a general mixed boundary condi-
tion (BC)

B, K grad u) + au = v, (2)
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Education and Research Consortium (WERC) and Sandia National Labora-
tories, by the Department of Energy under Contract DE-AC04-76DP00789, for
which Dr. M. G. Marletta was the technical monitor, and by the Schlumberger
Foundation. Dr. Shashkov was partially supported by the independent research
and development program at Ecodynamics Research Associates.

given on the boundary 9{} of £} (here (E , B }is the inner product
of two vectors). The problem is to solve for the function u
when K is a given matrix or tensor function of the spatial
variables that is symmetric and positive definite, f is a source
term that is a function of the spatial variables, n is a unit
outward normal to 8}, and e, £, and y are functions given on
o). It is assumed that a8 = 0.

In this paper, we derive a second-order accurate, nearest
neighbor approximation for the boundary-value problem con-
sisting of the PDE (1) and the BC {2) which preserves the main
operator properties of the continuum problem. The boundary-
value problem considered here can be written in terms of an
operator that is self-adjoint and positive definite (see Section 2).
Our approximation to this boundary-value problem preserves
this property; that is, the approximation can be written in terms
of a symmetric and positive-definite matrix. One reasen these
properties are important is because the most powerful linear
solvers can be used to invert such matrices.

Our study of elliptic problems is motivated by the desire to
solve more realistic problems that involve complex systems
of partial differential equations and complex geometry. It is
common for an elliptic problem to appear naturally in such
problems and it is critical to have a good discretization for
this operator.

The solution algorithm for the elliptic problem is derived by
combining two methods: the method of support operators as
developed by Favorskii ¢f al. [9], and the mapping method,
see for instance Thompson et al. [12]. There is also a discussion
of the mapping method in Knupp and Steinberg [6] that is
particularly appropriate to this discussion. The support-operator
method proceeds by deriving definitions of the divergence,
gradient, and curl that satisfy certain integral identities. In this
method the grid is viewed as a set of points in physical space
that can be arranged in a rectangular array so that the neighbors
of a point in physical space are the same as the neighbors in
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the array. In the mapping method, the grid is given as the
image of a simple rectangular grid in logical space, under a
transformation that maps logical space to physical space. Then
the chain rule is then used to transform the PDE and BC to
logical space where they are discretized.

These methods are combined by first applying the mapping
methed to the boundary-value problem (1) and (2). To apply
this method it is assumed that there exists a mapping of the
region () to a square. The boundary value is then transformed
to the square using this mapping. An important point here is
that the transformed problem has exactly the same form as the
original problem. The coefficients in the PDE and the BC do
change, but the new X is still symmetric and positive definite.
Next, the support operators method is used to discretize the
transformed problem on a uniform grid. The resulting scheme
is shown to have all of the desired properties. The second-order
accuracy of the method is demonstrated numerically.

This combination of methods produces a new algorithm for
solving boundary-value problems for general elliptic operators
with general Robin boundary conditions, in general regions.
The discretization uses logically rectangular grids and a natural
staggered discretization for vector fields. The approximations
are second-order accurate with nearest neighbor stencils. The
matrix related to the discrete problem is symmetric and posi-
tive definite.

We note that neither the support operators nor the mapping
method, by themselves, give all of the desired properties. In
the support-operators method, the discrete gradient is not local
when the grid is non-orthogonal and when a local basis system
is used to describe the vector field (see [9] and Section 4 of
this paper). The source of the non-locality is the use of a local
basis of normal components to cell faces to describe vectors.
A non-local gradient means that the matrices of the discrete
gradient and Laplacian operators are not banded. In fact, the
gradient is given by the inverse of a banded matrix times a
banded matrix (see Section 4). If this algorithm is restricted to
a rectangular grid, then the gradient is local and, in fact, has a
nearest neighbor stencil. On the other hand, the matrices
resulting from the mapping method are not symmetric for
second-order approximation of general Robin boundary condi-
tions unless the matrix K is diagonal and the grid is a product
of one-dimensional grids.

In Section 2 the properties of the continuum problem are
described. In Section 3 the support-operators method for a
rectangular grid is described, while in Section 4 the support-
operators method is extended to logically rectangular grids
for problems with diagonal K. The mapping method and the
combination of the two methods are described in Section 5.
The results of the numerical tests are given in Section 6.

2. PROPERTIES OF THE CONTINUUM PROBLEM

In this section the properties of the continuum boundary-
value problem in two dimensions (x, y) are explicitly derived
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in preparation for the discretization process. It is assumed that
all functions are smooth enough that all definitions make sense.
Thus, precise definitions of function spaces are not given.

First, note that the PDE (1} can be interpreted as a stationary
heat equation for which there is only one conservation law—
the law of heat conservation:

aQ_ .-
= 3§s (%, 7) dS 3)
where
w = —K grad u ey

g= JvudV,

are the total amount of heat and heat flux. Formally, this relation
can be obtained from the integral identity

as follows:
dQ = ﬂ — - = _ -
I_dtjvudv_ J’Vd“""’dv— SES(W,n)dS. (6)

More generally, the differential operator —div K grad is
self adjoint and positive. As shown below, this property follows
from the integral identity

jvq)divru dv Jv(?u, grad &) dV = 353 b0, 7)dS, ()

which connects the operators div and grad. When deriving a
finite-difference scheme, it is important to preserve the differ-
ence analog of integral identities (5) and (7).

In the version of the support-operator method used in this
paper, the natural invariant definition of the divergence op-
erator,

S
div = lim V?gv . ) av. (8)

is used to derive a discrete analog DIV of the divergence div,
and then the integral identity (7) is used to derive a definition
of a discrete analog GRAD of the gradient grad.

2.1. The Second-Order Operator

First the important properties of the second-order operator are
derived directly from an integral identity. The case of Dirichlet
boundary conditions for the BVP consisting of (1) and (2) is
easy to analyze, so here we concentrate on the mixed BC; that
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is, choose 8 = 1. Thus the problem to be analyzed is

—divKgradu = f,
(Kgradu, ) + ou = i,

xy)ev,
(x,yyEIV, a0 =0,

9)

where the function u belongs to space H with the following
inner product:

(u, )y = Luv dV-i-SEwuv ds, u,vEH (10)
Equation (9) can be written in operator form
Au=TF (11)
where the operator A is given by
—divK grad i, (x,VEYV,
AH—-H Au= . (12)
(Kgrad u,n) + au, (x,y) € dV,
and the right-hand side has the form
£ (x,y)EV
F= . (13}
i, (x,y)E 8V
The operator A has the following properties:
(Aus U)H = (M, AU)H, (Aus u)H = 01 (14)
and, moreover,
{(Au, )y = O, if ¢ > 0. (15)

The proof of these properties relies on the definition of the
operator (12), the inner product (10), and an application of the
integral identity (7):

(Aw, V)y = fv (K grad u, grad v) dV + §3wauu 5. (16)

This relationship implies that A is a symmetric operator. If v
is taken to be equal to u in the previous equation (16), then

(Au, u)y = jv (K grad u, grad u) dV + fﬁﬂv m?dS=0, (17)

that is, A is positive because K is positive.

2.2, The First-Order Operators

The properties of the second-order operator can be derived
from those of the divergence and gradient. Moreover, the prop-
erties of the divergence and gradient are of interest in their
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own right. To investigate the properties of first-order operators,
the space of vector functions H must be defined. For two vector
functions A, B € H, their inner product is defined as

A, By = jv(ﬁ',fé)dv. (18)

For the next calculation, it is useful to rewrite original equations
(9} in flux form:

divw =, x,y)EV,
x, eV,

(x,y) € aV.

—

W

—Kgrad u,

—(W, 1) + au=1p,

(19)

From the flux form (19), it is clear that operator A can be
represented in the form
A=BKC+D (20)

where the operators B, K, C, and D have the definitions

Cu = —grad u, (x,y)EYV, 21)
Kw =Kw, (x,yYey, (22)
N +divw, (x,yEV
Bw = . ’ (23)
—(w,n), (x,y)E 0V
0, x, eV
Du = , 24)
o, x,yyeav
where
C:H—H,
K:H —H,
B:H - H,
D:-H—-H
The next step is to show that
B = C*. (25)

The definition of operator B, the formula (10) for the inner
product in the space H, and integral identity (7) which connects
div and grad give

(BW, u)y

Lu div % dV — 3§Wu(ru,ﬁ‘)ds

- J (% grad u) dV (26)

= (ﬂ;’ Cu)lh
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which is what is required. The statement of the original prob-
lem gives

K =K* > 0. 27)

Also, the required properties of the operator D follow from

(Du. v)y = 3§avauu dS = (i, Du)y. (28)
and
(Dit, )y = iv au dS = 0, 29)
because o = (.
This means that
A = C*KC + D, (30)

and then properties (14) of operator A follow from the properties
of operators B, K, C, and D:

B = C*, D=D*=(, K=K*>0. (31
In particular, note that if A kills 4, then
0= (Au, u)
= (C*KCu + Du, 1) (32)
= (KCu, Cu) + (Du, 16).
Because D = 0 and K > 0, this implies that Cu = —grad

= 0, that is, 1 is a constant. If o is positive at some point
on the boundary then ¥ = 0 and then A is positive definite.

These considerations, in continuous case, illuminate the prop-
erties of first-order operators that must be preserved when the
finite-difference schemes are constructed.

3. THE SUPPORT-OPERATORS METHOD

An overview of the method of support operators, as devel-
oped by Favorskii et al. [9], is given and then applied to the
elliptic boundary-value problem. The prime operator is chosen
as the divergence div and its discretization DIV is chosen as
a discrete analog of the invariant definition (8) of the divergence
operator. The derived operator is the gradient grad whose dis-
crete analog is GRAD. The discretization of the elliptic equa-
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TABLE I

Contimuum and Discrete Notation

Cont Disc. Cont. Disc.
u v f F

div DIV grad GRAD
H HC H xS

A A K X

B B D b

@ Y [l W

tion (1) is then given by

DIVK GRAD U = F, (33)

where K, U, and F are discretizations of K, #, and f given in
the PDE (1) (again, see Table I for the notation).

3.1. Main Stages

The five main stages in the support-operators method of
constructing conservative difference schemes for elliptic
PDEs are:

1.  Write the differential equations in terms of the invariant
first-order differential operators div and grad.

2, Choose where in the grid the scalar and vector functions
are to be located,

3. Choose one of the operators div and grad to be the
prime operator.

4. Choose a discretization of the prime operator.

5. The discretization for the remaining operator, called the
derived operator, is derived from the discretization of the prime
operator and a difference analog of the integral identity (7).

3.2. Spaces of Discrete Functions

In this section, the support-operators scheme in a simple
rectangular grid in two dimensions is constructed following the
outline in the previous section. A rectangular grid with constant
steps X and kY in x and y directions is used (see Fig. 1). The
nodes of this grid are given by pairs of indices (i, /), ] =i =< N,
1 = j = M. For cells, integer indices are also used; a cell has
the same indices as its southwest comer (see Fig. 1).

The discrete analog of a scalar function u is a cell centered
scalar function Uy, (see Fig. 1), while the analog of a vector
function w is a discrete vector function W = (WX, WY) where
WX, is located at the center of the left vertical side of cell
(i, j) and WY, is located at the center of the bottom side of
cell (i, j) (see Fig. 2). The treatment of the boundary conditions
requires the introduction of the value of the scalar function on
the centers of the boundary segments (see Fig. 1): U, Uwj,
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(1.M) (N.M)
. . 'U( o
L L ] * [ ] [} L ]
Uim-1)
L 7 @, [ ] [ ] L ] R [ ]
Yoy Ui Yii Yw-1) Y
(i}
[ [ ] ] L] L [
l’ * ] . . . [
l Yiny
(1.1) - i Ui (N.J)
- hX ————=
FIG. 1. Discretization of scalar.
j = 1, ey M - 1, al‘ld U(,‘g]), U(i,M]: l = 1, seay N - 1 See Table (X, E)(,',}') = '}{(AX(;J)BX(,’J) + AY(;J)BY(,‘_J;))
I for a summary of the notation.
. ) ) + . R . o
The space of discrete scalar functions is labeled HC and has (AXyBXap + AYooBYapn)
the inner product + (AX 31 pBX oy + AY 0 BY i) 36)

N=-1 M-1

(U, Viac = 2, >, UgpViphXhY

=1 j=1

N-1 M1

+ Z U(,“Q) V(;'D)hX + 21 U(N,j) V(N‘j) hY (34)
i= =

N-1 M-1

+ }‘f U Vi hX + Z UayVaophY.
= =

The space of vector functions is labeled #¥ and has the
inner product

£

N-1M-1
A, Blyg = 2. >, (A, B); hXhY,

=1 j=1

(35)

~
I

where

+ (AX(H]J)BX(EHJ') + (AY(f.j)BY(i‘j))}
= 3{AXpBX i + AX i1 pBX i1
+ AY,BY i, + AY 0y BY e}
This definition takes into account the fact that the components
of the discrete vectors are not located at the same point.

3.3. The Prime Operator

The continuum prime operator is the divergence div along
with some boundary conditions:

div w,

—(w.n),

The approximation B: HF — HC of the prime operator B is
obtained by using its invariant definition in the cell (i, j) as in

x,y)EV,
(37)
(x,y) € aV.
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(1.M) R R (N.M)
[« o) q 4
" WD 7
q ) e q
X (i) WXiv1i) Xy
Win
g 1) {ij) . Lo P @
jr & b o q
l o N A
(L.0) Whit) (N1}
- g ——=
FIG. 2. Discretization of a vector.
definiti : o= .
efinition (8) (@9U), = Mﬂ i=2, N-1j=1,.,M,
' hX
Uay— Uy .
- Gy = ) 0 —1...M,
(AW ( i hX/2 J
r .
WXie1)~ WX WY~ W, i LN Upp — Uw-rpp :
=+ - . , (BOU Yy = — 2l =1,.,M,
5 hY =M1 o hX/2 J
—WY, i=1..N—1.j=0 ) Yy — Uy - _
{ e =1, J=00 (@YU, = Y . i=1,.,Nj=2,..,M—1,
) + WY, i=1,.,N—1,j=M, ’
U — U
. . ®» =D W0 —
WXy, i=0,j=1,...M—1, (‘€U A7/ R i=1,.,N,
L+W(NJJ' 1= N,j = ], vary M— 1; (Cg(rJU)(.m _ U(i,H) - U(E.M—l)’ = N
(38) " hYi2 T
(39

3.4. The Derived Operator

The derived operator 4: HC — ¥ is the adjoint of 9B,
€ = &B*, and then GRAD = —% is the analog of grad. A
formula for € is derived using a discrete analog of the integral
identity (7). Using the previous expression (38) for the operator
%R, the definition of the inner products for spaces HC {34) and
P (35) and a bit of algebra gives:

Recall that the continuum gradient has the property that if
the gradient of a function is zero, then the function is constant.
An important property of the discrete gradient is that it mimics
this property. If GRAD U = 0, then U is a constant. In fact,
{497y = 0 imphies that & is constant along rows and
{€U) = 0 implies that U is constant along columns.
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3.5. Multiplication by a Matrix and the Operator D (i+1j+1) ij+1) < (r1j+1)

In two dimensions, the matrix K has the form

K. K, * ® .
K = (40)
and its discrete analog has the form
(i-1J) (i) (i+1J)
o — (KXX KX Y) 41y  FIC-4 Interor X stencil: O, WX and KXX; O, WY and KYY; @, KXY.
KXy Kvy/)
The values KXX; ;) and KYY,; ; are taken at the same points, (ﬁ{X Yo = KXX o jr1mAX )
respectively, as are WX, and W¥;;,. The value of KXY ; is v
taken at the cell center (see Fig. 3). If the standard averaging + KXY o-rnjsimA o1
notation is introduced for the components of a vector . CL
A= (AX, AY) whergz =2,..N—1,j=1,..,M — 1, and the ¥ component
’ : of HA is defined by
AXgp + AXG, -
AX(HU?J) = %ﬂ, (A )E;,j) = %K-XY(HIIQ‘ijl,'Z)AX(iH!Z,j]
A¥gpen + AV, (42) + 8KXY i rinyamAX gy
AY i =% =l ,
i 2 + KYY(J'-H‘."ZJ')&AYGJ)’

_ HAY = KXY 3 AX 44

and so forth, then the components of KA are defined by (A% R “
+ KYYi 1A Y G

(HA) 49 = KXY ir1nm-1mAX gr1ma-)

+ KYY(:‘HIZ,M)A Y(:‘.M) ’

(KA )é.j} = KXXy 114X
EKXY i ipinimAY oo

+ %KXY(H vz Y(j,j+112) s

- where i = 1,...N—1,j=2,.., M — 1. The operator & is
(GtAX = KXX 0Ky “3) zero except for

+ KXY(‘AIZ.j+ln'2)AY(l,j+lI2): (@ U) U
0p = XoyUon,

By = awpUny»

(ij+1) (i+1j+1)

¢ (@U Yoo = Uy,

(DU )am = caanUan-
{See Fig. 1.)
KXX (Tjel) o @D
(i 12)] O KXY 12 je1i2)
P [ )
(L4} (i+1j)
m(i+1/2j}

(1) (24

FIG. 3. Matrix discretization. FIG. 5. Left boundary stencil, symbols are as in Fig, 4.
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{ij+1) (i+1j+1)
¢ ] b
(i) (i+1)
D . N
(iy-1) (i+1j—1)
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Ol 0
AVAENTA

NI /(\/J
Ol D|O

FIG. 6. Interior Y stencil, symbols as in Fig. 4.

3.6. The Elliptic Operator

The operator form of the finite-difference scheme for the

elliptic boundary-value problem (1) and (2) is

AU = (BHE + )l = F, (45)

It is convenient to give the explicit form of the difference

equation for approximating the elliptic equation —div K grad

i = fusing the flux W = - K GRAD U as the discrete cell
conservation law

WX~ WXy + WYy — WYy

FI1G. 7. Domains of uniformity.

U(x—1.1+1) _ U(I—l‘_i—l)

+KXY 14 4hXhY

)

U(l‘+1.j+l] - U(j—l,jﬂ)
4hXhY

ooy — s
_ G+l )
KY} W1+

hY?
U(Hl.j—n * U(j—l,j—l)
4hXhY
U(i. n U(f.‘—l

+KYY uﬂfzf)_‘iwj—) =F-

_KXY(i+]I2,j+3.'2)

+ KXY((‘+1.’2,J‘—II2)

The result for cells near the west boundary is (see Fig. 9)

=Fip. 46
hX hY o (46)
Because the expressions for multiplication by K and for
GRAD U have several cases, there are nine different cases for
the formula for A U; each case is called a domain of uniformity . ¢ . E .
(see Fig. 7). Only three typical cases are described:
internal cells: i =2, ., N—2;j=2,...M— 2, (i=hi+l) i) o (i1 j+1)
near boundarycells: i = 1;j =2, ... . M — 2
comercells:i = 1;j = 1. . q e *
The result for the internal cells is (see Fig. 8) -
(i—1.j} (i) {i+l)
Uiy — U(i.')
7KXX(H1,}+1.’2] #
[ ] CL L ] b [ ]
U i+1,j+1 T Ui+1 i—1
—KXY, . (+1J (t1j-1)
{i+342,/+1/2) 4]’!th
(i=1 j=1} ij-1) il j=1}
Uppn— Uiy
+ KXX i o1y — LD
i) hX? FIG. 8. Interior elliptic stencil: O, WX, <, WY; @, U
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] [ ] q L
Lish 204D

9 L ] q L]
o, 2)

] [ ] D [ ]
{1j-1) 2j-1)

FIG.9. Left near-boundary elliptic stencit: @, {/; @, boundary I/ and WS,

O, WX; &, WX,

Uon— U
_ 2.0 (N3]
KXXoi0m

hX?

Ugjiny— Ugy-
_ 2j+1) (-1
KXY 512 j41)

4hXhY
Uin— Ug;
+KXX(]J+II2J %X—zlqw
Ug o — Uy ie
+ KXY 501 W

(48)

1/{U;: o — U
_KXY(3124+312)1( i+ O

hX/2hY
—KYY(yz,'H)#‘““‘—‘LU“ 20— Uy

hy?

Ugjen — Uy
hXhY

ViU — Ug;i-
+KXY{312J—112)Z( e QD

hX2hY
Uign— Up e
+KYY(3,2J)¢*"h—Y2”'L' =Fup-

Upjiy — Uy
hXhY

The result for a cell in the southwest comer is (see Fig. 10)

Uy — Uy

- KXX(Z,J!:) hX?
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1 {Upy — Uy
—KXYispam 4 ( (}{;){hYIZZO)

U(I.I) - Um,])

+KXX(I.31‘2) thlz

Uu.l) — Uay

U [ U(z,l))
hXhY

1
+ KXY(ma:z)Z ( hY/2hX

L Yun— U(l.l)) (49)

hXhY

1 {Ujyn—U
—KXYipsm~ ( 12 03 4+

U(z,z) — Uu.zn)

4\ hX/I2hY hXhY
Uiy —U
_KYY(3,12'2) (1.2)]1Y2 (1.1)
1 U:l n_ U(Ol) U(:.n — U(H))
KXY g | =+
23 4 ( hX/2hY hXhY
Uiy — U
+KYY a0 (1'2Yz/2 B8 = Fuy

Next consider the approximation of the boundary conditions
for which two typical cases are described:

westboundary: i =0;j=2,.. .M — 2,

southwest corner: i = 0;j = 1.

The result for internal cells on the west boundary is (see

Fig. 11)
—(H GRAD Uy + YopUpy = Yoy (50)
or
] ] q ]
12) > 2,2}
(] [ ] [0} ®
1,1) -~ 2,1) &

FIG. 10. Comer elliptic stencil; symbols as in Fig. 9, and ®, boundary

{7 and WY.
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[ 3
(1j+1)
® |
£
[
(1j-1)
FIG. 11. Left boundary stencik: symbol, as in Fig. 9.
Unp = U
_KXXHJHIZ) AW‘L
ViUw) = Upgen , Upyn = Unyp
_KXY(IUZJH.'Z)E( . hY — L hY . (51

YopUop=Y¥op-

The result for the point on west boundary near the south-
west corner is (see Fig. 12)

_(?}{ GRAD U)(O‘I) + a((},l)U(O,l) = ’!‘(0,1) (52)
or
Uin—U
—KXX 13 _[I.IIZLXIZ &0
1 Ugy — U, Uny — Up.
_KXY(zfz.a.'Z)E( (“})11"/2 2 4 (IZ)hY . n) (53)

+agnlon = $oy-

3.7. The Matrix Problem

From the formula (45), 4 = RHE + <%, and B = €*,
HK=H* K >0 9D =D* and ¥ = 0, it is clear that the
operator & is symmetric and positive. The note at the end of
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Section 3.4 and the argument given for (32) can be generalized
to show that if AU = 0 and Y is positive at one point of the
boundary, then I/ = 0, and then that ${ is positive definite. To
do this, first note that if { I/ = Q, then the positive definiteness
of 3 implies that ‘€U = (. The fact that the first component
of GRAD U = 0 implies that U is constant along vertical
lines, while the second component being zero implies that I/
is constant along horizontal lines, so that U is then a constant.
The boundary condition gives {/ = (. This then implies that
the matrix of the finite-difference approximation to the elliptic
problem, when multiplied by a diagonal matrix of the volumes
that appear in the discrete scalar inner product, has the same
properties as the operator #.. The stencil for the elliptic operator
s is nearest neighbor, which implies that the matrix of & has
nine non-zero bands. The explicit form for & is neither useful
nor illuminating, so it is not written out.

4. SUPPORT OPERATORS ON GENERAL GRIDS

In this section, the ideas in Section 3 on support operators on
rectangular grids are extended to general logically rectangular
grids. Because rectangular and logically rectangular grids have
the same logical structure, much of the notation is the same
for both problems. However, in the case of general grids, the
description of vector fields is significantly more complicated.
Only the case of diagonal K is presented to reduce the length
of the presentation. A particularly important point is to under-
stand why the discrete gradient is no longer local.

4.1. Discretization in Logically Rectangular Grids

A logically rectangular grid can be indexed in exactly the
same way as a rectangular grid (see Fig. 13). Thus the nodes
of the grid are labeled using (i, j), 1 =i =N, 1 =j=M,

.
12)

) .
1.1) o

FIG.12. Leftnear-boundary near S-W comer stencil: symbols as in Fig, 10,
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FIG. 13. Logically rectangular grid,

and the quadrilateral defined by the points (i, j), (¢ + 1, j),
(i+ 1,7+ 1), and (i, j + D) is called the (i, ) cell (see Fig.
14). The area of this cell is denoted by VC, ;. The length of
the side of the (i, j) cell that connects the vertices (7, j} and
{(i.j + 1) is denoted S§, ), while the length of the side that
connects the vertices (i, j) and (i + 1, j) is denoted S ;. The
angle between any two adjacent sides of cell (i, j) that meet
at node (k, I} is denoted ¢}/’ (the angle @/, . is displayed in
Fig. 14).

It is usual to place some mild smoothness assumptions on
the grid. We assume that there exist constants Ciil, and C§),
which do not depend on #, so that

Chiaht? < VCyp = Chal?, (54)

and that there exist constants C2., and %, which do not depend
on h, that

Crzninh = Sfu.j), Sn(i,j) = Chuh, (55)

(i+1,j+1)

(i ;. (i+1)

FIG. 14, Typical cell of logically reclangular grid.

141

{i+1j+1)

WS,
5 i+1yJ

(ij) WS“:‘J {i+1j)

FIG. 15. Discretization of a vector.

and that there exists a constant & > 0 such that

sin({) > 6,

(56)
where & is a constant which does not depend on 4. Under these
conditions, the support-operator discretization is second-order
accurate, as it is in a simple rectangular grid.

The notation for discrete scalar functions is the same as in
the case of a rectangular grid and thus U/ ;, denotes a cell value.
Also, for discretizing the boundary conditions, values of scalar
functions on the boundary segments are used (see Subsection
3.1). Vector functions are described using their componenis
which are the orthogonal projections in the direction which is
perpendicular to the sides of the cell {(see Fig. 15). To distinguish
this from the case of a rectangular grid where these projections
coincide with the Cartesian components of the vector, the nota-
tion WS¢, ; is used for the component at the center of the side
S&:p. and WSn,;, is used for the component at the center of
the side S'T](,"j).

4.2. Spaces of Discrete Functions

The space of discrete scalar functions is labeled HC as in
the case of a rectangular grid and has the inner product

N—=1 M1

U, Vige = 2 - UipVipVCay

i=l j=

N-1 M-1
+ Z Uiy VenSney + Z UnpVausSény G
i= i=
N-1 M=1
+ - U(I‘,M)V(E,M)ST](I“M) E] U(l.j)v(].j)sg(l.j)'
i= i=

The space of vector functions is labeled %% and has the
inner product

N-1 M-

(A, Bs = 2,

i=1 j=

ki

(E, E )(;’J) VC(;'.J‘) ) (5 S)
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FIG. 16. Components of vector in local basis.

where (;‘; , B ) is the dot product of two vectors. A formula for
this dot product in terms of the components of the vectors
perpendicular to the cell sides is needed (see Fig. 16). Thus
suppose that the axes £ and n form a non-orthogonal basis
system and that ¢ is the angle between these axes. If the unit
normals to the axes are nS & and nS 7, then the components of
the vector W in this basis are the orthogonal projections WS¢
and W57 of W onto the normal vectors. See the discussion in
Chap. 2 of Knupp and Steinberg [6] for more details. Some
s1mp1e vector algebra shows that if A = (AS¢, AS7) and
= (BSE, BS) then the expression for the dot product is

(A, B)
_ ASEBSE + ASmBS7 + (ASEBST + ASmBSE) cos(e)
sin’(¢)

(59)

Now the previous formula is used to obtain an analog of the
formula used in the rectangular grid case:

&2 sin( i) o)
[AS§(K+k,j)BS§(i+L_i) + AS "7(r:j+1)BS N j+h
+ (=D AS Eie yBS My o

+AS 7)(5.j+r)BS§(i+k.j}) COS(QDEH)k.jH))],

(Z s §)(u) =

(60)

where the Vi) ., are some weights for which

1

E (IH:}H)

ki=0

= VCyj. (61)

In this formula each index (k, I) corresponds to one of the
vertices of the (i, j) cell. In practice, the volumes that are
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summed in Formula (60) are taken to be one half of the area
of the triangle in the (i, /) cell which contains an angle at the
node (i + k,j+ 1.

For the computation of adjoint relationships it is helpful to
introduce the formal inner products, [, -], in the spaces of
scalar and vector functions. In HC

N-1M-1 N-1
(U, V]ge =, . 2 UipVip t 21 UinVin (62)
i=l j= i=
M=-1 N—-1
+ 2 UwpVey + 2 Uiian Vi + Z UapVn.
and in Y
- N M-] N-1 M
(A, B ]WE ASEupBSEip t 2 ZAS NipBSTG 5. (63)

i

[l
-

=1 i=1 j=

Then the relationships between the natural inner product and
the formal inner products are

(U, Vigc = MU, Vlge, (A, Blay = [FA, Blay, (64)

where M is the symmetrnic positive operator in the formal inner
product, that is,

(MU, V]ge = [, -M«V]Hr:a [MU, Ulpe = 0. (65)

A comparison of the natural and formal inner products gives

(M, =VC Uy, i=L ., N-1Lj=1,..,M-1, (66)
(MU)(;J)=S§(,'J)U(¢'J), i=1 andI:N,J: 1, ,M_ 1, (67)
(MU)(E,j)=Sn(i,j)U(i‘j}! i= 1, ...,N_ l,j: landj:M (68)

The operator ¥ can be written in block form:

- Su S\ [ASE SuASE+ SpAST
FA = = . (69)
Su Sn/ \AST SnASE+ SpASh
This operator is symmetric and positive in the formal inner

product:

(FA, Blus = [A, $Blag,  [FA,Alwe > 0. (70)

A comparison of formal and natural inner products gives
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ij+1

i+1j

FIG. 17.  Stencils for operators S, {top) and S, (bottom).

M-1

N
(A, By = [FA, Bluy = 2,

=l j=1

[($nASEi) + ($AST I BS &) (71)

Z 2 [(S2ASE)ij + (SnAST) 1 BS 1165,

trom which formulas for operator ¥ can be derived:

L Vi
SuASEis = ——— | AS&. 5,
(SuASEp g__:o sin( K.DE;{,-'H))) i
1 (i—i._{i))
(SpAST)u, = 2 (*l)kH_‘J(,—mCOS(‘P(UH))AS"?(- —& D
k.i=0 (uH))
! 2w
SuAST iy = D, (—DF ——¢ CDAS N1y
(S2ASN G, “2:0( ) Sin(g (:i j))) cos(@t i JAS Ngar -t
L v
SpASTip = ———— | AS ). 72
( 22 77)(‘;) k.fz=0 Slnl((ﬁ’giitﬁ)) i ( )
Actually, these formulas are valid only for i = 2, .., N — 2;

J =2, .., M — 2 butitis possible to prove that if fictitious
cells with zero volumes are introduced then these formulas are
valid for all / and j. The operators §, and Sx are diagonal and
the stencils for the operators Sy, and 5, are shown in Fig. 17.
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4.3. The Prime Operator

In the interior of the region, the prime operator &, which is
the analog of the divergence, is given by

BW)e, = DIV W),

{(WS‘E(HIJ)Sg(H] W) stﬁ.j)s‘f[i.j)) (73)

VC(! i}

+ (WS"?(f.jH)S"?(s,jH) - WS"T(I‘.;‘+1)S77(-‘.;‘+1))}=

while on the boundary it is (here the operator B is an approxima-
tion of the normal component of vector)

(BW)eo, = —WSnuy, i=1,.,N—-1,
(BW)iw, = +WSna, i=1,..N—1, (74
(BW)oy= —WSEuye  j=1uM—1,
BW)wy = +WSEwp,  j=1,uM— 1.

4.4. The Derived Operator

The derived operator, which is the analog of the gradient, is
defined by € = %@* where the adjoint is taken in the natural
inner products. For a general non-orthogonal logically rectangu-
lar grid, it is not possible to write simple explicit formulas for
the components of the operator ‘€, but it is possible to find a
formula for € in terms of M, &, and 9.

Recall that B: HF — HC. The definition of the adjoint gives

(%W, Dyue = (ﬁ"a%*U)w, (75)
which can be translated to the formal inner products as
[BW, MULpc = (W, SB*Ulus. (76)

The formal adjoint % of @& is defined to be the adjoint in the
formal inner product, which gives

[W, BOMUYey = (W, PB*Uliey. (77)
This relationship must be true for all W and U, so
REM = FR= (78)
or
R+ = FIBOM. (79)
Thus the discrete gradient is given by
GRAD = —€ = -9 B9, (80)

Note that ¥ is banded and consequently ¥~! is not banded and
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then GRAD is not banded, that is, GRAD has a non-loca!
stencil, and consequently the matrix for GRAD is full. In fact,
this is not a catastrophic problem. At the end of this section
we show how to compute with such operators. There is an
explicit formula for B%;

S&ipUap — Ui—l,;))
. (81)

—(BI2MYV) .y = (
“ Sn(i,j)(U(i‘j) = Ui-1)

In the case of a rectangular grid, the formulas in this section
reduce to the formulas in Section 3. Moreover, for an orthogonal
grid, the operator & is diagonal and therefore a simple explicit
expression can be given for GRAD. It is also important to
note that the expressions for all of the operators contain only
coordinate invariant quantities like volumes, areas, and angles,
so that the description of scalar and vector functions is also
coordinate system invariant. This means that the constructed
operators can be used in any coordinate system by simply
changing the formulas for geometrical quantities.

4.5. The Elliptic Operator

The support-operator approximation for the PDE (1) is de-
fined to be

(DIV % GRAD U),,, = F, (82)

for the interior nodes, while on the boundary the expressions
coincide with those on a rectangular grid. For example, for
=90,

_(3‘{ GRAD U)((}'J‘) + Y(g‘j)U(oJ) = \I‘r(g‘jl. (83)

Again, note that this approximation has a nonlocal stencil. Also,
Y and ¥ must be computed at a point in the boundary segment
of the cell.

4.6. Solving Problems with Non-local Stencils

In this section, an outline of a solution procedure for the
system {(82) and (83) is given. For simplicity, assume that
K = I, the identity matrix, and that the boundary condition is
the homogeneous Dirichlet condition, so that GRAD = - DIV*,
The solution of elliptic problem (82) is obtained as the steady-
state solution of the heat equation. An implicit finite-difference
scheme for this heat equation is

U.':Jrl —_ Un

- — DIVI GRAD U™ =,

(84)
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where upper indices involving # correspond to time levels. As
before, the flux is given by

W = —GRAD U (85)

and then the heat equation (84) can be written in flux form

Ur:+l _ Un
Ar

Wl = —GRAD U™ = 9 DIVO (M U™,

+DIVW ! =f (86)

(87)

The first equation can be solved for U**! and then this result
can be substituted into the second equation to get

Wrel = —Ar$ T DIVO M DIV W' + F,  (88)
where F contains known quantities. Applying the operator ¥
to this equation gives

FPW = —ArDIVE M DIV W + FF (89)

or

(¥ + At DIV® 4 DIV)W™! = SF, (90)
which gives an equation for determining the fluxes at the new
time level. It is possible to show that the matrix for this system
is symmetric and positive definite, so that efficient iteration
methods can be used to solve this system. After the flux W=*!
is computed, U"*' is computed explicitly from the first equation
in (84).

5. THE MAPPING METHOD

When the boundary-value problem (1) and (2) is given in a
non-rectangular region that can be mapped to a rectangular
region, then the mapping method can be used to transform the
boundary-value problem that has exactly the same form as the
original, and consequently the support-operator method for a
rectangular region can be applied to the transformed problem.
This discussion of combining the mapping and the support-
operators method follows the discussion in Knupp and
Steinberg [6].

In this approach, it is assumed that the grid is given by an
analytic transformation,

x=x(&m,  y=yE o, 91
of logical space (&, 1), 0 < &, 7 = 1, to physical space (x, y).
The uniform grid,

(92)
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is the chosen logical space, and then the grid in physical space
is given by

X = x(&, TL.‘)e Yig = y(&, 7?;')- (93)

The boundary of the physical region is given by the image of
the boundary of the logical region, that is, the grid is bound-
ary conforming.

Next, the PDE (1) and the BC (2) are transformed to logical
space. To do this, let the Jacobian matrix of the transformation

be given by
X Ve
J= ( )’
Xn ¥y

and then the Jacobian J is given by the determinant of the
Jacobian matrix

(94)

J= Xe¥e = Xg¥y- (95)

It is always assumed that J > 0. Next introduce the cofactor
matrix

c=Ji= ( & *yf). (96)
—Xx, X
If column vectors are used, then the chain rule gives
grad, u = %C grad, .u = 9 ' grad, ,u, 97
and then the product rule for derivatives gives
div, A = }divglq(C*Z ). (98)
Consequently, the PDE (1.1),
~div,, Kgrad, u = f, (99)
is transformed to
—% div,, K grad, ,u = 7§, (100)
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or
~div,, K grad, ,u = f, (101)
where
u(é, m) = w(x(€, ), y(& M),
~ 1
K& m = C*(¢&, ) K(x(&, n), (& mIC(E ), (102)
JE
FE ) = JE& MFE ) YE ).
Note that K is symmetric and positive definite if K is.
The specific formulas are
- 1
Kp=+ j(+Kny3, — 2Ky x,yy + K22, (103)
- 1
Ke=— j(+Kuy£yTl — Kofxey, + Zo¥e) T Ky XeXy), (104)
K., = -I~:1]-(+Kuy§ — 2K xey: + Kyxd)., (105)

To transform the boundary condition to logical coordinates,
first note that the boundary of the physical region is given by
the four curves

(X(& 0), ¥(& 0, (x(£ 1), (& 1)),
(x(0, m), ¥(0, ), (x(1, m), y(1, n))

0=¢f=1,
(106)
D=q=1

In terms of the inverse transformation, the boundary curves are
given by

Ex,9)=C, wlx,ym=C,  C={01} 0N
These curves, respectively, have
N, = grad, £, N, = grad, 7 (108)
as normal vectors and then the unit normals are
— Kil — KE
o=, fy = —=-. {(109)
Nl |N;|

To write everything in terms of logical coordinates, note that

— x2+y2
|N1|2= £J E!

14 .2
Xy + ¥y

|er|2 = 3

(110)

that is, the length of the normal vectors to a boundary are the
same as the lengths of the tangent vector to the same boundary
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divided by the Jacobian, and

= | 1 .5 = 1 J -
N[ = j Cgl‘adf',,«f = jC€|, Ng = ngradsc‘,,‘r] = jC@z,
a
where
- 1 - 0
€1=(0), €2=(]). (112)

Thus the normal vectors are scaled columns of the matrix C,
Because the boundary has four parts, the boundary condition
(2) has four parts, one of which is
B, K grad, ,u) + au =1y, £=0,0=n=1. (113)
Note that the unit outward normal to the boundary £ = 0 (in
logical space) is

= —el (114)
The boundary condition {113) can be written
-8 (ch k1 cgrad a) Yai=7y (115
|ﬁ|1 ] J £ *
or
B (E, lC"“J'('C grad ,,fi) +ai=rvy (116y
J |Nl| E) J £, »
or
—gw(—el,ﬁgradmaﬂ + aii =, (117)
J N
or
B, F) + &ii = 7, (118)
where
F =K grad, 4,
a(£, 1) = a(x(& ), y(& M)
(119)

g= BOE m, y(_:g’, m
JE N

Y& ) = y(x(&, m). ¥(& ).
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The important point here is that the transformed PDE
multiplied by the Jacobian, and the BC multiplied by the Jacob-
ian or not, have the same form as the original PDE and BC.
Consequently, the support-operator method for a rectangular
grid can be applied to the transformed problem. Thus div,,
becomes the prime operator, grad,, becomes the derived opera-
tor, and K becomes the matrix.

To measure the size of the solution and the fluxes, or the
errors in these quantities, it is most appropriate to use invariant
inner products:

@)= [ [ a5 yagan, o0
(F.6)=['[ .5+ F.g+G)jazan,

where (-,-) is the standard inner product of vectors.

5.1. The Combined Method

To combine the methods, first the mapping method is applied
to a given problem and then the support-operators method is
applied to the transformed problem. Thus, in the description
of the support-operators method, x and y must be replaced by
£ and m so that, in logical space, the grid is given by

F -
nj=ﬁ,ISISN, (121)

and then the grid spacing in logical space is given by A& =
1N — 1), and Ay = 1/{(M — 1). In physical space, the grid
is given by

l=i=N1=i=N.

(122)

Xop=x(& m) Yoy = y(& )

Scalar functions are invariant objects, so the same notation
for discrete functions values can be used in both logical and
physical space. However, discrete vectors have different com-
ponents in logical space and physical space. In logical space
the vector A has components (A&, Ar) that are the same as
those described in Section 3.2, that is, A, is located at the
center of the left vertical side of logical cell (i, j) while A7,
is located at the center of the bottom side of logical cell (i, j).
In physical space, the components are described as in Section
4, “*Support Operators on General Grids.”’

Because the mapping method preserves the form of the
boundary-value problem and the support-operators algorithm
has the desired properties on rectangular grids, the discretized
problem will involve a symmetric positive-definite matrix that is
given in terms of a nearest neighbor stencil. Such discretizations
have been called mimetic [4] in the literature. The accuracy is
checked numerically in the next section.
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08
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1} 0.2 04 06 08

FIG. 18. Grid on a square with & = 10.

6. NUMERICAL TESTS

Background material on numerically testing finite-difference
algorithms can be found in Roache [8], Knorr et al. {5], Gupta
{3], and Perrone and Kao [7]. Numerical tests are performed
only for the combined method. The errors in the numerical
scheme are measured in both the maximum and mean square
norms for both the solution and the fluxes. The norms are
discrete analogs of the invariant norms given by the inner
products defined in (120). Thus, if U, ; is a function defined
on the grid, then define

N-1M-1

U =3, >, Ubyduphéhm,

= =t

N-1 M-I
[U]l- = max max U,

.

(123)

where_'.](j‘ﬂ = I(&. ;).

It W = (W¢E Wa) is a flux defined on the grid, recall that
it is defined on the cell faces, so first define the cell-centered
quantities

_ W&+ WEL, Wn + Wrs
Wi, = & §+|!J’ T i+ (124)
2 2
and then define the vector
- 1 - =
Fip=—Kqp Wop (125)

where F = (FX, FY). Now the norms are given by

— N—1 M-l
|Wil. = max max (max(|FX; 4|, 1F Y00 (126)
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4

L 1 1
28 3 35 4

FIG. 19. Elliptical grid with a = 2.

N—1 M—1

Wl = ; ;‘ (FXGp + FYiiphéhn.

Recall that the grid points are given by

Xop=xEa ) Yap = y& ). (127)
If « is an exact solution, then define
iy = WX, Yop), (128)

while if W = {(wé, wrp) is an exact flux given in logical coordi-
nates then define the cell-face-centered components of the

[ X: 3 4

06 |

04

0ZF

" k 1 L 1
02 0.4 08 08 1 1.2 14

FIG. 20. Curvilinear grid with ¢ = 0.500.
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TABLE I
Uniform Grid
Max Mean Max Mean Max Mean Max Mean
N order order const const order order const const
order: 2 2 1 1.5
9 .93 .61 039 0.68
17 2.1 2.0 92 59 1.80 1.9 0.20 0.46
33 20 24 92 58 1.50 19 0.14 0.34
65 2.0 2.0 92 58 0.64 1.8 0.18 0.27
129 2.0 2.0 92 58 0.75 1.7 0.21 0.23
257 20 2.0 92 57 088 1.6 0.22 0.21
flux by for r sufficiently large. Consequently, the order & of the error
is defined by
hn hE
wéin = W‘f(fs, 7y _2“ s Wi =wi| &+ ?r Uian £
k= 11_{2 lOgl —EH(-;]—) (132)

{129)

Now the errors in an approximate solution 7 with flux W=
(W¢, W) are given by

E(U) = |lu— Ul

£y = |lu — Ul (130)
EAW) = |% = W,

EAW) = [ — W]

In the numerical testt M = N = 2"+ land h = 27 =
1/(M — 1). If E* is any one of the norms of errors given in
{(130) for & grid with M points, then it is expected that F* ~

Once the order has been computed, then the error constant is
given by

C =lim (M — D)} E¥ = lim 2% E". (133)

r—® o

A test problem is created by first choosing X to be a rotation
of a diagonal matrix:

K = RDR¥, (134)

CH where C and k are constants and # is sufficiently small, Where
To test this numerically, note that
+cos(B) —sin(f d 0
EY 2y =k (131) =( & ¢ )), D:( ' , (135)
Erh T o2y T +sin{f) +cos(H) 0 d
TABLE III
Square with & = 5
Max Mean Max Mean Max Mean Max Mean
N order order const const order order const const
order: 2 2 1 1.5
] 31 1.8 1.60 2.00
17 2.0 2.1 31 1.7 1.60 1.8 98 1.50
33 2.0 2.1 32 1.7 1.10 1.8 92 1.20
(% 20 20 32 16 81 1.7 100 1.00
129 2.0 2.0 3.2 1.6 38 1.6 1.10 94
257 2.0 2.0 32 1.6 03 1.5 1.20 91
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TABLE IV

Square with £ = 10
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Max Mean Max Mean Max Mean Max Mean

N order order canst const order order const const

order: 2 2 1 1.5

9 6.0 39 2.8 3.8

17 2.0 2.1 6.2 3.5 1.40 1.6 2.0 33

33 2.0 2.1 6.4 3.3 .84 1.6 22 3.0

63 2.0 2.0 6.4 3.2 82 1.6 25 28

129 2.0 2.0 6.5 32 93 1.6 26 26

257 2.0 2.0 6.5 3.2 1.00 1.5 2.6 2.6
and multiplied by the denominator of ¢.) This provides a complete

description of the problem used to test the algorithm,
o= 3 Several grids were used with this test problem. The first class
DX of grids were given by mapping of the unit square to the unit
sqnare (see Fig. 18):
dy=1+257 + 32, (136) Sdvare (see Fig. 18)
dy=14 x4+ 2% r= 4 o8l — O — 1 —
Evedl—od—onl~m,
i - y=mn+epl —piE— mil - H.
The solution to the PDE is chosen to be

u(x, y) = sin(mx) sin(z y), (137)  The second class of mappings were given by elliptical coordi-

and the fis computed from the PDE (1). Boundary conditions
of the form

(Kw,n) + au="1, (138)

where

e_xy+x+_r

«= sin{x) cos(y) + (x + y)2%

(139)

are implemented. Now +y can be computed from the boundary
condition (138). (In the code, the boundary conditions are

nates (see Fig. 19}

x = rcos(8), y = arsin{#), (141}
where
r=1+¢ a=%"". (142)

When a = 1, this gives polar coordinates. In this and only this
case, the grid is orthogonal. The final mapping gives a general

TABLE YV
Elliptical with a = 1 (Polar)

Max Mean Max Mean Max Mean Max Mean

N order order const const order order const const

order: 2 2 1 1.75
9 1.1 .63 1.8 4.7
17 1.8 2.0 1.3 .60 1.7 1.9 1.1 3.7
33 1.9 2.0 1.3 59 1.3 2.0 0.83 30
63 2.0 2.1 1.4 59 12 2.0 0.72 25
129 240 2.0 1.4 58 1.1 1.9 0.66 2.2
257 240 2.0 14 38 1.0 1.8 0.64 2.1
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TABLE VI
Elliptical with ¢ = 2

Max Mean Max Mean Max Mean Max Mean
N order order const const order order const const
order: 2 2 1 1.75
9 5. 17. 170. 650.
17 2.0 2.1 15. 15. 1.40 1.7 120. 610,
33 1.8 2.1 17. 15. 1.90 2.0 63, 600.
%) 1.9 20 19. 14, 2.00 1.9 32. 430.
129 1.9 2.0 20. 14, 1.80 2.0 18. 370.
257 290 10 20, 14, 65 19 2. 330.

grid (see Fig. 20):

x=§+scos(%(§+n)); y=n+851ﬂ(%(§+7}))-

(143)

6.1. Data

Data were collected for M = 27 + 1 for r = 3, ..., 8. All
results were tabulated with two significant digits. The first
column in the tables give the number of points in the grid. The
next four columns give the data for the solution, while the last
four columns give the data for the fluxes. The columns labeled
“*max order’” and ‘‘mean order’” give the order of the method
as determined using (132), while the columns labeled ‘‘max
const’”” and ‘“‘mean const’’ give the error constants as deter-
mined by (133).

Table II gives the base case of a uniform grid (say (140}
with & = 0). Tables I11 and IV give the data for the mapping
of the square to the square shown in Fig. 18, Tables V and VI
give the data for the elliptical grids shown in Fig. 19. Finaily,
Tables VIl and VIII give the data for the general non-orthogonal
grid shown in Fig. 20.

In all test problems, the order of convergence of the solution
in the maximum and mean-square norm is 2. The mean-norm
orders of convergence for the fluxes vary between 1.5 and 1.75

for examples with non-trivial mappings, while in the maximum
norm the order is 1.0 when non-trivial mappings are used. A
number of other tests were run, for example, problems where
d; and d, in (136) were more complicated and where the solution
1 (137) had higher order polynomial terms added. For this more
complicated example, Dirichlet boundary conditions and a case
where three sides of the region had Neumann and one side had
Dirichlet boundary conditions were also run. The conclusions
hold also for these tests, except that for some cases the order
of convergence for the fluxes was a bit lower than for those
presented, or was unexpectedly high. For some examples the
grids were not fine enough, so the asymptotic limit had not
been reached.

For all of the regions, when the parameters of the mapping
are changed the order of convergence for all measures of the
error remain unchanged. For the mapping of the square to the
square, changing ¢ = 5 to & = 10 makes a nontrivial change
to the grid, but the convergence constants change by at most
a factor of 2, the same as for the change in &. For the elliptical
grids, changing @ = 1 10 @ = 2 causes increases in the error
constant, at the highest resolutions, by factors ranging from 14
to 160. This is presumably true because the grid for e = ! is
orthogonal, while the grid for ¢ = 2 is not. Again, for the
general grid, changing £ = 0.25 to ¢ = 0.5 makes a significant
change in the grid. As with the grid on the square, the conver-
gence constants increase by at most a factor of 2.

The linear equations were solved using an SOR solver with

TABLE VII

General Transformation with ¢ = 0.250

Max Mean Max Mean Max Mean Max Mean

N order order const const order order const const
order: 2 2 i 175
9 1.1 63 1.08 2.3
17 2.0 2.0 1.1 61 2,00 2.0 53 19
33 2.0 2.0 [.1 .60 1.70 20 31 L5
65 1.9 2.1 1.1 59 1.30 1.9 25 1.3
129 20 2.0 1.1 59 83 1.8 28 1.2
257 2.0 20 1.1 58 87 1.7 31 £3
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TABLE VIII

General Transformation with ¢ = 0.500

Max Mean Max Mean Max Mean Max Mean

N order order const const order order const const
order: 2 2 1 1.75
9 1.1 63 1.80 4.7
17 1.8 2.0 1.3 .60 1.7 20 1.10 3.7
33 19 2.0 1.3 59 1.3 240 .80 3.0
65 20 2.1 1.4 .59 12 2.0 70 2.5
129 240 20 14 .58 1.1 1.9 .66 22
257 20 2.0 14 .58 1.0 1.8 64 2.1

a relaxation factor of 1.8. The iterations were stopped when
the residual was less than 10°® or the number of iterations
exceeded 10*%. The SOR solver required slightly less than some
constant times M? iterations to solve the linear equations.
Clearly, faster solvers will be a great advantage for problems
with even modest values of M. ‘
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